Dobrow-chap2
对于 Introduction to stochastic processes with R
一书的笔记
Let us finish the article and the whole book with a good example of dependent trials, which approximately can be considered as a simple chain. –Andrei Andreyevich Markov
Chap2: Markov Chains: First steps
本章讲马尔可夫链
Introduction
引入的案例: 这一节,用一个类似大富翁的游戏来引入马尔可夫夫性。
马尔可夫链的形式化定义为 > Markov Chain > Let
be a discrete set. A Markov chain is a sequence of random variables taking values in with the property that > > for all The set is the state space of the Markov chain. 、 称为在时刻n到达状态i。时间齐性马尔可夫链:
transition matrix:
- n步转移矩阵计算(矩阵乘法)
- 若干例子:
- 收敛于一个各行相等的矩阵;
- 不收敛,进入跳跃的状态;
- 收敛于一个各行不相等的矩阵
第五部分从直观上为下一章铺路。